puts remote Australia in the Spotlight

Cutting-edge science meets an ancient craft that’s as old as time: a microscopic discovery in spinifex grass has the potential to revolutionise everyday products, like latex and other rubbers, while creating an industry for remote Australian communities.

Almost 200 kilometres west of Mount Isa, on the Queensland–Northern Territory border, lies the town of Camooweal.

With a population of just 315, there’s an eerie remoteness broken only sporadically by the sound of passing road trains.

The red dust strikes you most as you drive along the Barkly Highway into town. But it’s what’s growing in the dust that’s catching the world’s attention.

Spinifex – a tough, spiky tussock grass – dominates much of the red-sand desert and rocky ranges of central Australia. Thriving in arid soils, it grows as far as the eye can see around Camooweal.

Indigenous Australians have collected spinifex for tens of thousands of years, extracting the resin from the base of the stems for use as an adhesive – mainly for attaching stone cuttings to wooden handles to make tools.

Now, a discovery by scientists from UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN) is promising to revolutionise the technology behind everyday products, while creating a sustainable industry for remote Australia.

Working in partnership with traditional Indigenous land owners of the Camooweal region, the Indjalandji-Dhidhanu people, AIBN researchers have developed a method of extracting nanofibres from spinifex, which can then be used as an additive in latex products such as condoms and gloves.

The research – led by AIBN Professor Darren Martin and colleagues Dr Nasim Amiralian and Dr Pratheep Annamalai – has found that the nanofibres from spinifex significantly improve the physical properties of latex, and can be used to make condoms as thin as a human hair without any loss in strength.

Professor Martin says the discovery is like nothing he has seen before.

“The nanofibres that we can extract are long and thin, only tens of atoms wide but thousands of atoms long."

Professor Darren Martin

“As a materials scientist, this is exactly what we look for when we want to reinforce flexible materials.

“We tested our latex formulation on a commercial dipping line in the United States and conducted a burst test that inflates condoms and measures the volume and pressure and, on average, got a performance increase of 20 per cent in pressure and 40 per cent in volume, compared to the commercial latex control sample.

“With a little more refinement, we think we can engineer a latex condom that’s about 30 per cent thinner, and will still pass all standards.”

Professor Martin says the benefits of the nanofibre technology will interest latex manufacturers across the multi-billion-dollar global market, but could also revolutionise material science across multiple industries.

Work is underway to add spinifex nanofibres into other rubber compounds, plastics, and even carbon fibre.

AIBN materials engineer Dr Annamalai is also researching the benefits of adding the nanofibres into bitumen to create more durable road surfaces.

“I see this project creating change in a multifaceted way,” says Professor Martin.

“We’re changing the way people think about nanofibres, and our platform technology is starting to raise significant awareness about the differences between regular biomass and arid plants.

“If you look at the trends, most agriproducts have to be grown in more fertile areas. But those areas are being taken up very quickly.

“Making use of the arid parts of Australia to produce high-value nanotechnology products is very exciting.”

Professor Darren Martin
UQ’s AIBN researchers Dr Pratheep Annamalai, Dr Nasim Amiralian, and Professor Darren Martin at Camooweal.

UQ’s AIBN researchers Dr Pratheep Annamalai, Dr Nasim Amiralian, and 
Professor Darren Martin at Camooweal.

In 2008, UQ anthropologist Professor Paul Memmott led a multidisciplinary research team to look at the science of spinifex, working with Indigenous communities to source the grass and investigate harvesting methods. That project led Professor Martin and his team to Camooweal.

UQ and the Dugalunji Aboriginal Corporation have since signed an agreement to recognise local Indigenous traditional owners’ knowledge about spinifex and to ensure that they will have ongoing equity and involvement in the commercialisation of the nanofibre technology.

The research has received funding from the Federal Government’s Indigenous Advancement Strategy scheme, Myuma Pty Ltd, Dugalunji Aboriginal Corporation, Australian Research Council, the Queensland Government’s Advance Queensland Research Fellowships scheme and UniQuest.

Find out more

To learn more about the AIBN, visit

Connect with Professor Martin at

Zooming in on a major breakthrough

Dr Pratheep Annamalai and Dr Nasim Amiralian in the AIBN's labs.

It was a hunch that led Dr Nasim Amiralian to put the fibres from spinifex grass under the microscope.

After arriving at UQ from Iran in 2010, Dr Amiralian began studying the sticky resins as part of her PhD studies with UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN).

With a background in silk and other natural materials, her PhD project was designed around understanding the composition, extraction and purification of the resin.

“My background is textile engineering, so I didn’t have much knowledge about the chemistry behind spinifex,” says Dr Amiralian.

“I did some research on applied things, such as using the resin as an anti-termite coating for timber, and found that it worked.

“I found that the resin contains more than 100 different volatile and non-volatile components. Based on the interesting results from the resins, we figured that the fibrous part of the plant – the leaves of the spinifex – would produce something interesting as well.

“We had a hunch that this was a highly evolved desert grass, but we didn’t know just how different it was.”

Dr Nasim Amiralian

Under the guidance of AIBN’s Professor Darren Martin, Dr Amiralian was able to discover unique nanofibres in spinifex grass.

“The first time I saw the nanofibres under the microscope, it looked completely different to anything I had seen before,” says Dr Amiralian.

Dr Nasim Amiralian with the nanofibres she discovered in spinifex grass.

Dr Nasim Amiralian with the nanofibres she discovered in spinifex grass.

“Instead of short, stubby nanofibres, we ended up with ropey, flexible, long and thin nanofibres with a diameter of less than 10 nanometres (one-billionth of a metre). When added to rubber products, such as latex, the long, thin and ropey nanofibres help to retain the elasticity of the rubber, making it stronger while still very flexible and soft.”

The AIBN began its research into spinifex in 2008, after UQ Anthropologist Professor Paul Memmott’s initial study into the desert grass.

This led to a five-year funding grant from the Australian Research Council.

“That was the first foray into renewable materials for most of the AIBN team working on this project,” says Professor Martin.

“Nasim had arrived via an international scholarship only months before and had the daunting task of looking at this spiky desert plant from a materials science perspective – something no-one had done before.”

“What we understand now is that spinifex grass has very high amounts of hemicellulose. That means it is easy to get in and break apart, and therefore easier to examine. You don’t need aggressive chemicals to break those interactions – just mild sodium hydroxide and a bit of mechanical energy.”

Indigenous opportunity sprouts from 'sacred' grass

Dugalunji Aboriginal Corporation employees harvest spinifex grass on the outskirts of Camooweal.

Colin Saltmere knows the Camooweal region like the back of his hand.

The Managing Director of the Dugalunji Aboriginal Corporation and proud Indjalandji-Dhidhanu man has lived and worked on his people’s traditional country in north-west Queensland all his life, and he’s passionate about other members of his community being given the same opportunities.

Mr Saltmere has overseen the establishment of Myuma Pty Ltd,
an organisation that manages the ongoing development and expansion of Indigenous civil construction, hospitality, catering, labour hire and business training.

Myuma hosts UQ researchers and students at the Dugalunji Camp, located on the outskirts of Camooweal, and has developed cross-disciplinary research projects with UQ teams.
One such project is the research into spinifex nanofibres by UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN).

UQ and the Dugalunji Aboriginal Corporation have signed an agreement to recognise traditional owners’ knowledge about spinifex, ensuring the Indigenous people are involved in
the commercialisation of the nanotechnology while creating an industry for remote communities.

“We’re very excited by the prospects of commercialising the technology, but there’s a bigger picture out there and that’s remote Australia."

Colin Saltmere

“This agreement with UQ will enhance the opportunity for employment in remote regions.”

While mining and cattle farming provide some employment in north-west Queensland and parts of Western Australia, Mr Saltmere says remote Australia does not have a recognised industry to call its own.

“If you look at the demographic of local people in the labour market, there’s not much work available. Spinifex farming can allow a natural process for creating employment,” he explains.

“You can naturally harvest the spinifex – which Aboriginal people have always done – bring it back to a central point and process it, then send it on for homogenisation to extract the nanofibres.

“There’s potential to create industries from that product – like tyres, plastics and rubber – from a centralised location in central Australia.

“We’ve also envisaged using the region’s Indigenous rangers as a managerial process for the environment where the spinifex grows.

“We want to provide full-time employment so that we’re not drawing on government resources to employ rangers on country where the income from this industry could help these workers move into managerial roles.

“It’s about providing jobs to our people and reclaiming some integrity.”

There are 64 known species of spinifex grass growing in Australia, mainly in parts of western Queensland, the Northern Territory and Western Australia. Indigenous Australians have been harvesting and using spinifex for many purposes for tens of thousands of years.

“Spinifex grass is an ancient and sacred material to Indigenous people, but also a material we use all the time,” Mr Saltmere said.

“We’ve used it for building shelters, making beds, and as a glue in making instruments like spears and boomerangs. And we know that the oils and the waxes can be used to treat wounds and for medicines.

Spinifex resin used as an adhesive to make a stone tool.

Spinifex resin used as an adhesive to make a stone tool.

“In Aboriginal culture, a product like that becomes a sacred thing. It belongs to country, and to us that’s what ‘sacred’ means.”

Colin Saltmere

AIBN Director Professor Alan Rowan says that while the discovery of spinifex nanofibres is exciting from a scientific and commercial perspective, the real benefits lie in the translation aspects behind the research.

“The AIBN effectively exists to do cutting-edge research for society. With this connection with Indigenous people, we have the opportunity to give even more back by turning science into employment,” Professor Rowan explains.

“There’s a wonderful contrast. Here you see a process that has been done by Indigenous people for tens of thousands of years, and then suddenly we have nanotechnology, which has only been applied in the last five years.

“Now the two are connected and it tells us that we have so much more to learn by taking nature on board and examining it more closely.”

Connect with Colin